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FOREWORD 

This   is  an  annual   report  prepared  by  Drs.   G.   C.   Sih 

and  G.   T.   Embley  of the   Institute  of  Fracture  and  Solid 

Mechanics,   Lehigh   University,   Bethlehem,   Pennsylvania, 

under  Air  Force  Contract  F08635-70-C-0120  for  the  period 

July  1970  to  June   1971.     The  principal   investigator  for 

this  project  is   Dr.   G.   C.   Sih,   Director of the   Institute 

of  Fracture  and  Solid  Mechanics,   and  the work was  admin- 

istered  by  the  Air  Force Armament  Laboratory,   Eglin  Air 

Force  Base,   Florida,   under  the  direction  of  Lt.   Charles 

L.   Tyler  and Mr.   Leo L.   Wilson. 

This   technical   report  has  been  reviewed  and  is 

approved, 

CHARLES K. ARPKE, Lt dolor.el, USAF 
Chief, Weapons Effects^ivision 
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ABSTRACT 

This report is concerned with the application of frac- 

ture mechanics theory to the problem of projectile pene- 

tration and the situation where an excessive amount of 

energy is available to damage the target material in the 

form of fracture followed by crack propagation.  The con- 

ditions under which this phenomenom takes place depend on 

several pararmters such as the speed and shape of the pro- 

jectile and the geometry and material of the target.  These 

conditions have been simulated in the laboratory.  The 

present investigation deals only with the development of an 

analytical fracture model of the projectile penetration 

problem using the theory of continuum mechanics. 

The amount of energy required to produce a crack of 

certain size in a pre-stretched plate within a very short 

period of time is estimated by solving a system of dual 

integral equations.  Computer programs are being developed 

In addition, the energy supplied to maintain a running 

crack at a certain speed is obtained with results illus- 

trated by graphs.  The effects of plasticity and rate 

sensitivity of the material are also discussed in this 

report. 
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SECTION I 

INTRODUCTION 

One class of problems that has received little atten- 

tion relative to its potential practical importance is that 

of the dynamic fracture of structures due to impact loadings. 

This is mainly because of the extreme complexities of the 

problems which involve, in addition to the inertia of the 

structural system, such effects as plastic deformation, rate 

dependent material property, non-linear behavior, etc. 

Lacking in particular is an understanding of the failure of 

structural members damaged by projectile penetration. 

From e thermodynamic viewpoint, the energy input to a 

target material is divided into elastic strain energy, plas- 

tic energy dissipated in the form of heat, kinetic energy, 

and the energy carried by the projectile leaving the target 

material.  However, if the input work exceeds the dissipation, 

then the unbalanced portion of the energy will be absorbed 

in creating new surfaces starting at the edge of a stress 

raiser of the damaged target.  This portion of the total 

energy is referred to in fracture mechanics as the "surface 

energy" which is also associated with quantities commonly 

known as the energy release rate or crack driving force G 

and, indirectly, the stress-intensity factor k (1,2) .  The 

relationship between G and k has been recently established 

(3) 
by Sih    for all the three fundamental modes of dynamic 
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fracture.  Hence, a knowledge of G or k will provide the 

basis for a more efficient assessment of how cracks, once 

initiated, might be stopped, and provide the first step 

toward the possibility of defining a dynamic fracture tough- 

ness value of a material which, in essence, determines the 

criterion for arresting running cracks. 

The overall problem of projectile penetration is con- 

siderably more complicated since it involves not only an 

estimate of G or k but the proportions and transfer rates 

among all the energies described earlier throughout the 

impact process.  Aside from the fracture energy, it is also 

important to know the portion of the total energy that is 

dissipated through transformation of the target material 

which undergoes a transition from the fluid to solid state 

during and after impact.  A study of the material flow pro- 

cess will involve the assumption of an appropriate consti- 

tutive equation and a numerical scheme which necessitates 

large scale computations.  The final configuration of the 

damaged target, such as hole diameter a..d the extent or speed 

of petalling cracks, depends on the distribution of the re- 

maining input energy. 

The material flow process concerned with the formation 

of holes in plates or the perforation of impacted plates 

has been studied by Taylor *  , Chen   , and others   '  . 

This report deals mainly with crack formation under impact 

and the conditions under which the cracks or flaws might 

2 
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trigger catastrophic failure of the target material.  To 

this end, the first year effort has been devoted to assess 

the amount of energy dissipated by the sudden appearance of 

a crack in a prestretched target material, a crack running 

at a constant speed, and the effect of plastic deformation 

ahead of a moving crack.  Other considerations, such as crack 

acceleration and rate sensivity of the material, wi11 be 

treated in the future. 

A general expression for the dynamic energy release 

rate of a crack undergoing arbitrary motion is developed in 

Section II.  This is essentially the work done for opening 

a line segment ahead of the crack.  For constant crack ve- 

locity, the expression reduces to that of the path indepen- 

(3) dent integral derived in v  . 

The problem of transient loading on 3 crack is considered 

in Section III.  Use is made of integral transforms coupled 

(8) with the technique of Cagniard v ' used for solving geo- 

physics problems.  There are  several  ways that this 

model may be of use.  For example, perforation of a stressed 

plate (or pressure vessel) by spall debris could result in 

what may be approximated as the sudden appearance of a crac'- 

and subsequently lead to catastrophic failure.  In an un- 

stressed plate the projectile itself could create and, over 

a short period of time, load a crack.  Such a crack can be 

(9) 
seen in Figure 78 of Reference v '.  The results in terms 

of dynamic stress-intensity factors are plotted as a function 

of time. , 



In Section IV,  several   models of propagating cracks 

are considered.  Through use of a simple model, in which the 

plastic yielding is assumed to occur in a narrow region 

ahead of the running crack, the amount of energy dissipated 

in the various running crack models is calculated.  This 

information is essential in estimating the fracture energy 

of the projectile penetration process. 

Thus, the overall objective of understanding the pro- 

jectile penetration problem will be accomplished by first 

solving a number of idealized problems where the various 

effects can be treated separately.  Evaluation of the pro- 

blem as a whole requires a coordinated effort of research 

in  several   areas which are still being investigated. 



SECTION II 

DYNAMIC CRACK DRIVING FORCE 

An expression is derived here for the energy release 

rate associated with a moving crack tip.  This derivation 

i s, i n principle, the same as that given by Atkinson and 

Eshelby '  ' in consideration of the Broberg model H') 

which deals with the case of a constant velocity crack run- 

ning at both ends.  This provides the basis for computing 

the amount of energy released by a running crack in the 

target material after impact. 

The general expression derived in Section 2.1 does not 

depend on behavior of crack velocity with respect to time. 

Subsequent reduction is made for uniform crack extension 

both for a steady state and non-steady state of stress ahead 

of the crack.  The general result for both of these cases 

of uniform crack extension may be written in terms of a con- 

(2) 
tour integral which Sih v ; has shown to be path independent, 

The energy calculation for the problem of a uniformly ex- 

panding crack with a Dugdale-type plastic zone is treated 

separately as the general expression cannot be readily 

applied. 

2.1  GENERAL DYNAMIC CASE FOR ARBITRARY CRACK MOTION 

An energy balance must be written for a contour C en- 

closing the tip of a crack moving with a constant velocity 

v as shown in Figure 1 . 

5 
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Figure 1,    Arbitrary Contour Around a Moving Crack Tip. 
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The fixed coordinates are (X ,X ) and the moving coor 
1   2 

dinates attached to the crack tip are (x^x^ where 

X. - vt6xi (i ■ 1,2) (1) 

For a given system of particles surrounding the crack 

tip the increment of irreversible energy pumped into the 

crack tip is given by the relation 

•AaG = AE - AU (2) 

where G is the rate at which energy is dissipated by the 

moving crack, AE is the increase in total energy, and AU 

is the work done on the system. 

Referring to Figure 2,  the system of particles to be 

considered is included in the area A bounded by C and the 

area A bounded by C and C at time t.  At time t + At the 
i        J     i 

same particles are bounded by C (enclosing A0) and C and 

C  (enclosing A ).  Note that C, and C„ are fixed contours 
2 3   2 1 2 

and C is a moving contour.  Then 

AU Au .T.ds (3) 
C +C 

1   2 

and 

AE £(x. ,t+At)dA 
K 0 

5(xk.t)dA + J C(Xk,t)vAtdX, 

- J *;(xk,t)vAdX2 +  J  0(At2)dX2 
c. c +c 

1 1   2 

(4) 



- X, 

Time = t 

Aa = vAt 

Time = t+At 

Figure 2.    Incremental Motion of Crack Tip. 



where 

1  Dui Dui     1  • • (5) 

Noting that Cj+ C2 coincides with C in the limit and 

dividing through by At, the limit as At-»-0 is 

•vG = 35 dx.dx. at ""i2 Uxk,t)v62ids. - 
Du, 
Dt  i T,ds 

or 

vG + J || dXidx2 = | [£(xk,t)vdx2 + T^.ds] .    (6) 

2.2  STEADY STATE AND STATIC CASE 

For the steady state case 

ü = o 
at 

and 

Dui  aui 

Dt  at 

a^ 
3X, 

= -V 
au_L 
ax. (7) 

Then 

au. 

'S.S. 
" [^*(xk)dx2 - T. ^ds] (8) 

where 

au. au, 
5"(xJ = W + * pv2 ^ 

i  i 

1 „„2 111 ill 
k' " " ' 2 p  3x. ax 

(9) 



For the static case, the energy release rate is also 

given by Eq. (8) with the kinetic energy term being zero. 

Thus, 

9u, 

st [Wdx2 - T. ^1 ds] 

(12) 

(10) 

This result was given by Rice l'""' .  The integrals in Eqs. (8) 

and  (10)  are path independent, as shown by Sih * '    for 

Eq- (8). 

2.3  BROBERG'S PROBLEM 

For the case of a uniformly expanding crack of length 

2vt, H/3t is not zero.  However, making use of the dis- 

placement and stress solutions which are given in Appendix I 

for mode I opening, it may be shown that in the limit as the 

area enclosed by the contour is reduced to zero the following 

expression holds: 

1 im 
00 

ff- dA 3t   ( 

Hence, 

GT = lim f [v£(x.,t)dx 
1  00 i     k    : T^ds] 

(11) 

(12) 

Making use of Equations (5), (7), and (9),  the preceding 

expression for Gj may be written in the form, 

LV(xk)dx2 - Ti TT^ + 
i 

10 
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+ lim § 
00 i 

-   lim 

rau. 3u. 
i     i 

9t     3t 2v 
3u.   3u. 

3t     3X 
C *- 

l-J 
ds 

00 

3u 
l 

i   3t ds (13) 

As  was  the  case  for   Equation (11), the second and third integrals 

on  the  right  hand  side  of   Equation (13) reduce to zero in the 

limit as  00.     Since Sih  has   shown  that  the  remaining  inte- 
rn 

gral   is   path  independent ,   the  expression  for  Gj   is   the 

same as  given  in      Equation (8) for the steady state case.   Thus 

in  terms  of the  function  F   (s   s   )  which  is  defined  for 

several   cases  of uniform crack  extension  in Appendix  I,  a 

general   expression which  is  applicable  to  all   cases  of uni 

form elastic  crack  extension  in  mode   I   that are  considered 

here may be written 

G? = ^TS1(l-sp[4sisr(l+spnF^(sl)s2) (14) 

where 

GI 
v-0 l 8y   x 

(15) 

! 

with k being the corresponding static stress-intensity 

factor for the particular problem under consideration and 

with 

< = ' 

3-4v       Plane Strain 

(3-v)(1+v) •  plane Stress. 

11 
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2.4  PLASTIC ENERGY DISSIPATION 

Consideration of the effects of ductility upon dynamic 

(13) 
crack extension may be made by use of the Dugdale 

hypothesis which is explained in detail in Section IV.  For 

steady state problems where the plastic zone size remained 

fixed with time, the energy release rate (or plastic energy 

dissipation) may be calculated by direct application of 

Equation (8) to an equivalent elastic problem. 

Consider, however, the motion of an expanding crack of 

length 2c where c is a function of time and with a thin 

Dugdale-type plastic zone located ahead of the crack tip. 
(14) 

As shown by Atkinson     (see Section V) for uniform ex- 

tension, this plastic zone must be expanding with time in 

order that the Dugdale hypothesis of finite stress at the 

end of the plastic zone be satisfied.  Therefore, the re- 

sults of the first part of this chapter cannot be used here 

even for the uniformly expanding crack since the contour C, 

which must enclose the entire region where energy dissipa- 

tion takes place, was assumed to be fixed in shape and size 

Obviously, an expanding plastic zone size would demand an 

expanding contour and therefore a separate analysis for 

this case is made here. 

Figure  3  shows the configuation of the crack surface 

and plastic zone boundary at times t and t+At during which 

time the crack edge extends by an amount Ac = v(t)At and 

12 



Figure  3- 

x2 

u2(x,,t+ At) 
u2(x,,t) 

— x, 

,c(t) _1 UAc 

a(t) Aa 

Change in Displacement of Crack Surface and 
Elastic-Plastic Interface over Increment of 
Time At. 

oo 
°22. 

*2 

1 

cr22 = Y a-22=Y 

Mffi 
c(t) 

a(t) 

TTTT 
Figure 4.   Geometry and Load Configuration for Equivalent 

Elastic Problem. 
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the plastic zone extends by an amount Aa = ß(t)At (Aa>_Ac). 

The expression for the increment of energy released on the 

right-hand side of the crack is then equal to the plastic 

energy dissipated in the movement shown. 

FLcalling the assumption of a thin plastic strip, the 

elastic-plastic problem being considered may be converted 

to the elastic problem of a crack of length 2a with tensile 

stress equal to the yield stress Y of the material acting 

on the region c<x<_a of the crack surface (see Figure 4). 

The negative work done by these tractions is then equal to 

the plastic energy dissipation and, for the case of per- 

fectly plastic material, where Y is constant, the resulting 

expression for energy released during the interval  f time 

At is 

Xi = a,(t) 3u 
GTAC = -All  = 2Y I       p 

xi=c(t) 

^r=-  At dx 
St.       l 

(17) 

where Gy is the energy release rate per unit crack extension 

All is the work done on the elastic plastic boundary, and 
P 

u is the displacement of the crack surface in the x -direc- 
2 K 2 

t i o n. 

Now introduce the dimensionless time variable x as 

c t 
i 

(18) 

and normalize the crack velocity v and plastic zone velocity 

ß with respect to c so that the following normalized crack 

velocities are defined: 

14 



(x) = 4^- , ß,(T) 
■ Mil 

c. (I?) 

Then, the result in the limit as At+O is 

x =a(x) 

Gjb = 2Y 

x =C(T) 
i 

3u 
—- dx 
3T    I 

(20) 

The calculation of G, for uniform crack extension, u.with 

b and ß  constant, is carried out in Section V. o 
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SECTION III 

SUDDEN APPEARANCE OF A CRACK 

The response of a solid medium to the sudden applica- 

tion of loads or the sudden appearance of geometric defects 

has engendered considerable interest in the past.  However, 

it has been only recently that any consideration 

has been given to the propagation of transient elastic waves 

in bodies containing mechanical flaws or cracks.  Due to the 

crack geometry this class of problems involves mixed edge 

conditions where both stress and displacement must be pre- 

scribed on a particular boundary.  Such conditions can give 

rise to singular stresses. 

An important case associated with the problem of pro- 

jectile penetration is that of a crack appearing suddenly 

in a stressed medium.  The associated disturbance due to the 

• i. may be studied in two separate regions: the local re- 

gion near the crack edge (near-field) or the region close 

to the wave front propagating away from the crack (far- 

field).  In fracture mechanics, much of the interest is 

centered on the near-field solution which describes the 

condition of possible crack extension.  The far-field solu- 

tion may be of use in determining the effects of the crack 

on other parts of the structure.  The necessity of descri- 

bing the two solutions separately is due to the adopted 

mathematical technique for solving crack problems which 

generally yields a tractable solution in only one of these 

regions. ,6 



A number of crack problems of this type have been 

solved for the case of anti-plane shear (see, for example, 

Kostrov v ' )\ however, the mathematical techniques employed 

are so far inapplicable to problems of in-plane loading. 

For in-plane loading, the only crack problem that has been 

solved so far is concerned with the case of a semi-infinite 

crack suddenly appearing in a stretched elastic plate. 

Maue '  ' and Baker '  ' have considered this problem using 

the Weiner-Hopf technique.  The solution obtained is un- 

bounded as t^°° and does not permit meaningful comparison 

with a static case; however, the near-field stress solution 

is valid near the tip of a finite crack for the initial 

period of time before interaction with stress waves emana- 

ting from the other crack tip occurs. 

In this section, the complete near-field solution to 

the problem of a finite line crack subjected to transient 

in-plane loading will be considered.  The transient response 

of the material in the neighborhood of the crack tip will be 

obtained for the case of sudden application of self-equili- 

brating  tractions to the crack surface.  The crack is con- 

tained in an initially unstressed infinite elastic plate 

and is oriented as shown in Figure 5.   For mathematical 

simplicity, the load is separable into a spatial and temporal 

function where the spatial function is even in x . Symmetry 

conditions then allow the problem to be solved in the upper 

plane only l'8'.  The special case where sudden uniform 

pressure, aH(t), is applied is treated in detail.  Here, 

17 



Self-Equilibrating Tractions 

q(x,) f(t) 

o 

H 

m 

Figure 5.    Crack Geometry and Stress Components 
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H(t) is the Heaviside step function. The addition of this pro- 

blem to the case of an infinite uncracked plate under uni- 

form tensile stress a  corresponds to the problem of the 

sudden appearance of a crack in a stressed plate. 

The analysis is done in two major steps.  The problem 

is first formulated with the aid of Fourier and Laplace 

transforms and reduced to a Fredholm integral equation in 

terms of the Laplace transform variable.  The Laplace trans- 

forms of the stress components are then inverted by a com- 

bination of numerical means and application of the Cagniard 

inversion technique. 

3.1  FORMULATION OF PROBLEM 

For plane elastodynamic problems, the displacement com- 

ponents may be expressed in terms of two scalar potentials, 

<f)(x ,x st) and ij>(x ,x ,t) so that 

ii_ + ML. 
9X,   3x 

1       2 

chjj    3 if) 
3x  " 3x 

2 

(21) 

where <t>  and IJJ satisfy the second-order partial differential 

equations 

V24> = ]_ ifi 
c2 3t2 

l 
C  3t2 

(22) 

with V2 being the Laplacian operator.  The dilational and 

19 



shear wave velocities are,respectively, 

c, = [(X+2M)/P]2 c2 = (y/p)5 (23) 

where X  and y are the Lame" constants- 

Applying the strain displacement and constitutive equa- 

tions for a homogeneous isotropic elastic media,the stresses 

may be written in terms of * and \p  as, 

11 PC
1
V   *   +   2pCa   3x7     3X7 +   ST 

2 2 

1 2 

pc^V24» 2pc 2    3 
2   3xx   \ 3x, 

_3JJ_  _   3£ 
3x 

•pc 2L..2        .„2 3x,3x. ,3xf      3x; 
1 2 

l""2 

(24) 

If the material is initially unstressed, the stress 

and displacement field due to sudden application of normal 

tractions to the crack surface may be found by solving the 

preceding field equations subject to zero initial conditions 

and the following boundary conditions at x2 = 0: 

o22(Xj,0,t) = -oq(x,)f(t)  ,  for |xj<a 

a12(xx,0,t) = 0 ,  for 0<|xj« (25) 

u2(x!,0,t) = 0 ,  for |Xj|>a . 

In addition,the condition on displacement at infinity is 

20 



1 im 

*; + *i+ 

[u (x ,x ,t) , u (x ,x ,t)] = 0 Llx12 2 v  1   2 

The parameter a is a constant with the dimension of stress 

and q(x ) is restricted to functions that are even in x ; 

that is, 

q(Xj) = q(-Xj) . 

3.2     DUAL   INTEGRAL   EQUATIONS 

Recalling  that  the  initial   conditions  are  zero,   the 

Laplace  transform may  be  applied to Equation (22) with the re- 

sult 

2 ,* 2 . * 
v2** = (p/cJV    .   vV = (p/c2)> (26) 

where the Laplace transform pair is defined by the equations 

f (P) f(t)exp(-pt)dt 

f(t) - 2iJ f f*(P)exp(pt)dp 

where the second integral is over the Bromwich path (19) 

In order to reduce Equation  (26) to ordinary differ- 

ential equations, the Fourier cosine and sine transforms will 

be applied.  The Fourier cosine transform pair is 

7(a) f(x )cos(ax )dx   ,  f(x,) = -  f(a)cos(ax )da 
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and the Fourier sine transform pair 

f(cO - f(x,)sin(ax )dxx , f(x ) = -  f(a)sin(axt)da 

0 

The application of these transforms will depend on whether 

the function under consideration is even or odd in x . 
i 

By consideration of the symmetry properties of the 

boundary conditions.it can be shown that for the case con- 

sidered here, 

<f>(xx,x2,t) = ♦(-x1,xa,t) ,  ip(xlSx2,t) = -^(-Xi.Xjt) 

and the solution may be considered in the first quadrant of 

the plane. 

Then, the Fourier cosine transform is applied to the 

it 
function  <p    and  the  Fourier  sine  transform  is  applied  to 

\p*  in   Equation (26), the result being, 

2T* d24> 

dx: 

dV 
dx2 

[a2   +   (p/Ci)
2]?*  =   0 

[a2   +   (p/c2)
2]i*   =   0 

(27) 

Solutions   to   Equation (27) that satisfy the regularity 

conditions  at  infinity are 

<j>    = J A(a,p)exp(-Y,x2) 

4**  = \ B(a,p)exp(-Y2x2) 

(28) 
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provided  the a-piane  is  cut  so  that 

"V* 2   +   (P/O     >   0       -°°<a<°°       (j   =   1 ,2) 
J 

The   inverse  Fourier  transforms  of   Equation (28) are 

oo 

4>    = J  Ato.pJexpt-YjXgJcostoXjJdo 

B(a,p)exp(-Y2x2)sin(ax1)da   . 

(29) 

The quantities  yx   and y     in Equations (28) and (29) are defined 

as 

Yi=-\/a2  +  (p/cj2     ,    Y2   =V«2   +  (P/c2) 

By combining the Laplace transform of x  with <J> and xy 

ij>*,   the  second  boundary  condition  in   Equation (25) may be expressed 

in  the  form, 

00 

I  ayiA(a,p) - [a2 + j  (p/c,,) ]B(a,p)  sin(axj)da = 0 

0 0 <|Xj|< » . 

The preceding equation is satisfied for all x by defining 

a new function D(ot,p) such that 

[a2 + I (p/c2)
2] 

A(a,p) ■ ~  D(a,p) , B(a,p) = aD(a,p) . 

Then, referring to Equation (29),     <t>* and  if/* may be written as 
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<f>* =  — (1 +  )D(a,p)exp(-Y x )cos(ax )a2da 
J  Y,        7nz\f2 x 2 ! 

b ' 2a'k 

^* =  D(a,p)exp(-y x )sin(aXj)ada 
(30) 

with the parameter k defined as, 

k *  c2/p 

Finally, the first and third boundary conditions in Equation (25) 

may be applied by substitution of Equation (30) into the Laplace 

transforms of a2Z  and u2. The resulting set of dual integral 

equations is, 

7    x                oq(x )f*(p) 
g(ak)D(a,p)cos(ax )ada =   

o 1       PP2 
00 

j D(a,p)cos(axx)da = 0  ,   |x |>a 

. Ix l< a 
l ' 

(31) 

where f  (p)   is  the  Laplace  transform of the function  f(t)   in 

the  first of    Equation (25) and where 

g(z)   =  2z2[l + (c n/z)2]^f(l   + -J-)2-(l   + L-)^[l + (c/z)2^) 
o I 2z2 z2 ° J 

with 

co   =  c2/
ci 

In  order to  put  the dual   integral   equations  in  a  form 

amenable  to  solution,   the  first of   Equation (31) is integrated 
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fSg^j^mismmMmtimar^^^^ 

with respect to xx over the interval (O.x^.  The result is 

»j-*. 

g(ak)D(a,p)si n(axx)da 
aQCx^f (p) 

PP' 

! D(a,p)cos(ax )da = 0   |xj>a 

x,|<a 

(32) 

I 

where 

QU,) 
x,. 

q(s)ds 

Following the usual argument for solution of dual inte- 

gral equations ^°', a displacement related function h*(x ,p) 

is defined by the equation, 

h*(xx.p) -f D(a,p)cos(ax )da (33) 

0 

Then, noting that the second of Equation (32) requires that 

h*(x ,p) be zero for jx |>a, the Fourier inversion theorem 

leads to the expression 

a 

D(a,p) h (x ,p)cos(ax )da (34) 

The function h*(x ,p) is to be constructed to possess the 

proper asymptotic behavior at the crack border, so that the 

near-field displacement is proportional to the square root 

of the distance from the crack edge.  To this end, let 
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h*(Xj ,p) 
y (i.p)Tdx 

X   A2-x> 
1 

,       0<x j<a (35) 

Substitution   of    Equation (35)  into Equation (34)  and aoplication of 

the  identity   ^21 ) 

t  cos(ax )dx 

 !—L = 5 J0(«T) 
6 ^^T   2 ° 

(36) 

where J denotes the zero order Bessel function of the first 
0 

kind, leads to the expression 

D(o,p) - § U (x ,p) J (on )idi . (37) 

In  order  to   rewrite  the   first  of      Equation (32) as an 

Abel's   integral   eouation  for  U   (x,p)   a   function  W(ak)   is 

introduced   such   that, 

W(ak)   =   (l-cj)-g(ak) . (38) 

By virtue of Equations (37) and (38), the governing integral 

equation takes the form 

(1-cJ) | [U*(T.P)T 
0 0 

2 oQ(x )f*(p) 
J„(ax)sin(ax )da]di =   

PP 

U (T,P)T  W(ak)J0(ax)sin(axJ)da]di   |x |<a . 
J 

0 
(39) 
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Using the identity, 

J (ax)sin(ax )da 

0<Xj<T 

(x2 - T
2
)"^   X,>T 

(?? ) 
the desired form of Abel's integral equation v '   is obtained 

I 

(1-cJ) 
r1 ii*/   \ A o  öQ(X )f*(p) 

ö    /rTTT pp" 

+    [U (T,P)T   W(ak)JQ(ax)sin(ax1)da]dx 

0 0 

x <a 
i ' 

Inversion of the preceding equation yields 

(1-C
2
)U*(T,P) 

2 f  1 2 oq(x1)f*(p) 

71 i /x^T PP' 

+ j [U*U,pk I W(ak)J0(adcos(axi)ada]dc  dXj 

T < a (40) 

Now, introduce the non-dimensional variables 

i  =   i/a ,   n = c/a ,  s = aa  ,  z = x^a 

and define 

K  = k/a B(z) = W(za) 

A*(5.0 » J (1-c2) pP2/^ U*^a'P> 
cf*(p) 
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Then,   making  use  of   Equation  (36), Equation (40) may be written in 

the  form  of  a   Fredholm  integral   equation  of  the  second  kind 

A   U,K)- A  (n,<)K(c,n)dn = £ /I 
0 0 

ß(z)dz 
(41) 

whose kernal , being symmetric in i  and n, is 

oo 

KU.n) - "^   sM(sK)J.(sn)J(s5)ds, 0<S<1, 0<n<l . 
(1-cJ) Jo '       --  -- 

For rapid convergence of the infinite integral, define 

a function d(z) as 

d(z) = W(z) + 
H 

2xC2 zz + E 

where, in order that d(z) be of order (z)"  for large z, 

H and E2 are chosen as 

H = 1 (3c0
H - 4c2 + 3) 

[5c« - 6cJ + 2c2 + 1] 

8ri 

Since 

H 
(a<)2+E 2.r2 

J3(sn)J0(s5)sds 
K 

the expression for the kernal in the Fredholm integral 

equation becomes 
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K(C,n) vTn 
0-c*) K 

sd(sK)J0(sn)J0(sC)ds 

0<£<n 

where  Ifl   and  K0   are  the  zero-order modified  Bessel's  func- 

tions  of  the  first  and  second  kind  respectively. 

Making use of Equation (37) and   the  definition  of A*  the 

unknown  function  D(a,p)   may  be  written   in  terms   of  the 

solution  to  the  Fredholm  integral   equation  as, 

■(„.p, .2i!£Uil 
(l-cj)pp2 

A*(€,ic) J0(ota£Kd£ 

This  expression may  be  integrated  by  parts  with   the  result 

D(a,p)   =     aaf*(P}      fA*(1,K)J1(aa) 
(l-c2)pp2a I 

dC 
A*U,<) J^aaSKdS (42) 

from which the stresses and displacements may be determined. 

3.3  TIME DEPENDENT STRESS FIELD 

The integral expressions for the Laplace transforms of 

the potentials <t>  and i>  are now completely determined and, 

making use of Equation (24), corresponding expressions for the 

Laplace transforms of the dynamic stresses may be obtained. 

It remains then to take the inverse Laplace transforms. 

This may be accomplished by applying the Cagniard-DeHoop 

29 

L 



/ o  2 3) 
inversion technique v '  '.     Due to the complexity of cal- 

culation, the detailed procedure will be given only for the 

first stress invariant, a  + a 
11 2 2 

From Equations (24) and (26) the      Laplace  transform of 

a       + a       is 
11 2 2 

o*x   + o*2   =  -2pp20-cp4>* (43) 

The  part  of  the  solution  of  interest  here  is   the  singU' 

lar  solution  near  the  crack  tip.     For  this   portion of the 

solution   it  is   sufficient  that only  the  first  term on  the 

right  hand  side  of Equation (42) be retained.     The  integral 

expression   in  D(a,p)   is  associated with  terms  that  remain 

finite  at  the  crack  tip. 

Putting  <t>*   in Equation  (30)  into Equation (43), the near-field 

solution  for a       + a       in  the  transformed  plane  is 

a, ,   + a 
11 2 2 

2aaf*(p)A*(l,K) jf-  LV   +}  (P/C2)
2] 

•   J   (aa)exp(-y  x,)cos(ax   )da . (44) 

Changing the variable of integration to a= wp and noting 

that J (awp) is an odd function with respect to w, Equation (44) 

becomes 

o*j+ a22=  -oaf*(p)A*(l ,<)p T(w)Ji (apw)exp[-p(/w
2+Cj5"x, 

iwx )]dw 
i 
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in which T(w) stands for 

T(w) 
w2 + (l/2c2) 

W/W2+(1/C2) 

Making use of the identity (21), 

Jj(x) = -  exp(-ixcosto)cos(w)dc 

Equation (44) further simplifies to 

* * 
o       +o 

11 2 2 
f lä2£ f*(p)A   (1,K)  j   cos(^)d 

. 0 

to 

•   exp[-p(/w2+Cj2x2-iwX)] 

The  variable  X   is   given  as 

dw 

T(w) 

(45) 

X  =  Xj-   acosw 

To evaluate Equation (45), consider   first   the   function   I 

defined  by  the   relation 

IT °° 

I costod 
f 

ÜJ T(w)exp[-p(/w2+c"2x2-iwX)]dw (46) 

0 

This function is in a form suitable for evaluation through 

the Cagniard-DeHoop method.  The objective then is to trans- 

form the integral on the right-hand side of Equation (46) into 

a recognizable Laplace transform.  This may be done by making 

the change in variables, 
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T = /w2 + c-2" x   - iwX 
1    2 

Solving for w as a function of T yields 

w = +/T2 - (R/c,)2 -i + ill 
1  R2   R2 

(47) 

in which Rz   =   X2 + y 

The remainder of the procedure consists of treating w 

as a complex variable and locating a path in the w-plane 

along which T is a positive number.  Referring to Figure 6 

and noting that the integrand in Equation (46) possesses branch 

points at +ic , cuts are made in the w-plane as shown in 

order that the functionVw2 + (l/c1 )
2 be single valued and 

have a real part that is positive everywhere in the w-plane. 

If T is restricted to real non-negative values, Equation (47) 

is the equation of a hyperbola in the w-plane.  If X>0 (X<0) 

the hyperbola will be in the upper (lower) half of the w- 

plane.  The path of integration in Equation (46) can be converted 

from the real axis to the aforementioned hyperbola by making 

use of the Cauchy integral theorem and Jordan's Lemma. 

Thus, after changing the variable of integration to T by 

means of Equation (47), it is found that 

CO 

r 
coscodu 

0      R/c 
[T<w+> & 

dw 
T(w-) ^-]exp(-px)dT 

(48) 

where the (+) and (-) superscripts refer to the right- (left-) 
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Figure  6, Path  of  Integration  in   w-plane 
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hand legs of the hyperbola.  Noting that the inner integral 

is in the form of a Laplace transform it is a matter of 

inspection to write the inverse Laplace transform of I as, 

I   (t)   =       H(t- ^CKw+J S£ T(w") -j^jcoscoduj (49) 

where H(t) is the Heaviside step function.  Referring to 

Equations (45) and (46)  and making use of the convolution 

theorem for the Laplace transform, the stress invariant is 

obtained to be 

t 

0     +a „, 11   2 2 

i ao 
m(t-x)I(T)dx (50) 

0 

where 

_ i 
m(t) = L" [pf*(p)A*(l ,<)] (51) 

-1 
with L  being the inverse Laplace transform operator. 

In order to determine a + cr  in the region near the 
112 2 3 

crack tip it is necessary to extract the singular portion 

of I(t) from Equation (49). Without going into mathematical 

details, it is easy to show that, as long as c t is suffi- 

ciently greater than r, the radial distance measured from 

the crack tip, I is independent of time, i.e., 

i- a 

-a 

qdg qdq 

(q-z)/a*-q* I   (q-z)/!7^ 
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with 

z = Xj + ix2 z = x  - IX 
1       2 

and where the transformation of variable, 

f 

q = acosw 

has been made. 

Making use of Chapter 4 of Muskhelishvilli *  ', the 

evaluation of the above integrals near the crack tip leads 

to the following expression for the singular portion of I, 

I = 2TH cos(0/2) + •• 

where r and 6 are polar coordinates with the origin attached 

to the crack tip as shown in Figure 7. 

Then, referring to Equation 50, it follows that the near 

field solution for the stress invariant is 

a  + a,, = ^^ M(t)cos(6/2) + 
22  /2T 

where 

(52) 

M(t) = I m(t)dt 

0 

(53) 

defined 

In a manner analagous to the static theory of brittle 

, a 

(3) 

fracture, a dynamic stress intensity factor, k (t) may be 
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36 

L 



k,(t) - M(t) a (54) 

With this definition the individual stress components may 

be evaluated, the result being 

^(t) 

11 
cos(e/2)[l-sin(e/2)sin(36/2)] + 

vzr 

22 
cos(e/2)[l+sin(e/2)sin(39/2)] + 

kt(t) 

/2T 

kj(t) 
0  =   cos(9/2)sin(6/2)cos(36/2) + 
12   v7r 

(55) 

I 

Thus, the stress field near the crack tip has the same 

spatial distribution for the dynamic case as for the static 

case the only difference being that the intensity of the 

field is a function of time.  The time dependent stress- 

intensity factor kj(t) is related to the function m(t) which, 

*/ noting Equation (51) depends ultimately on the function A (1,K). 

Thus, in order to obtain the stress-intensity factor for a 

given time dependent load applied to the crack surface, it 

is necessary to first numerically solve the integral Equa- 

tion (41)  for A (1,K) for various values of the Laplace 

transform variable p.  Inversion of the Laplace transform 

numerically then enables the evaluation of M(t) and thus 

kj(t).  This procedure is described in Appendix II. 

Numerical results have been obtained for the case of a 

uniform load a suddenly applied to the crack surface.  That 
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is, jq(xi) is a constant, and f(t) is the Heaviside step 

function H(t). By superposition, this type of loading cor- 

responds to the sudden appearance of a crack in a stressed 

plate. The solution to the Fredholm integral equation, 

A*(1,K) for this case is plotted in Figure 8. In Figure 

9 the dynamic stress-intensity factor, kj(t), normalized 

with respect to the corresponding static value o/ä, is 

plotted as a function of c t/a.  The ratio of shear wave 
2 

speed, c2, to dilatational speed c} that was used is 0.542 

the value for steel.  The significant feature of the solu- 

tion is that the stress-intensity factor reaches a peak 

greater than the static value and subsequently oscillates 

about that value with decreasing amplitude until, in the 

limit as t-*-ro, kj -  a/a".  When k, reaches its maximum value, 

c2t/a is approximately equal to 3.0.  For a crack where a 

is equal to one inch, this corresponds to an elapsed time of 

2.4 x 10"5 seconds. 

The method used here to determine the asymptotic be- 

havior of the near-field stress solution requires only that 

the stress wave boundary be well beyond the region of in- 

terest.  Thus, if the stress field is to be valid within a 

distance c of the crack tip, the condition on the time 

elapsed is c2t>>
£.  As long as ~ is kept small enough, the 

solution is valid for all time (except yery  near t -   0). 

This condition ^ n G is, of course, in addition to the usual 

static restriction that £<<a. 
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SECTION IV 

PLASTICITY MODELS OF STEADY STATE CRACK EXTENSION 

It is well known that upon reaching a certain critical 

stress or strain level the material in a region local to the 

crack tip will separate,causing crack propagation in a 

manner determined by the character of the stress field caused 

by impact and the structure of the target material.  In ma- 

terials without a substantial amount of yielding, the crack 

will normally start its motion abruptly and then very o'jickly 

settle down to a uniform speed.  To estimate the amount of 

energy carried by a running crack, it is essential to have 

a mathematical description of the stress state near the crack, 

This is important in determining the condition required for 

cessation of crack motion. 

For static problems, plasticity effects have been in- 

troduced into fracture analysis with a satisfactory amount 

of success (see a review article by Rice v  ' for example). 

However, very little analysis has been done which deals 

with plastic behavior of material in the neighborhood of 

propagating cracks.  For the few elastic solutions to dynamic 

crack problems which exist, the introduction of plastic 

effects causes complexities which, with the exception of 

the Dugdale model, have been beyond resolution. 

The elastic crack propagation problems that have been 

studied are in two basic configurations.  The solutions of 
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Yoffe     and Craggs     are representative of the first 

type (steady state).  Yoffe considered the problem of a 

crack of fixed length moving through an infinite elastic 

continuum with a constant velocity.  Craggs considered a 

similar problem where a semi-infinite crack propagates at 

a constant velocity and upon which tractions are applied to 

a segment of the surface which moves with the crack tip. 

Broberg's *  ' analysis of the physically more realistic 

configuration of a crack whose tips are expanding away from 

the origin at a constant rate is representative of the 

second type.  The solution obtained by Broberg was also ob- 

tained by Craggs * '   who made use of the dynamic similarity 

possessed by solution. 

4.1  THE DUGDALE MODEL 

One available tool for extension of these configurations 

(13) 
to include plastic behavior is the Dugdale v  ' model.  The 

Dugdale hypothesis, proposed for the case of plane stress 

yielding ahead of the crack tips, postulates that the yielded 

zone is a narrow region in the plane of the crack (see Fig- 

ure 10).   For a stationary crack of length 2c, the length 

of this zone is calculated by solving the elastic problems 

of a crack of length 2a with remotely applied tensile stress 

P and with tensile stress Y distributed over a length (a-c) 

of the crack which represents the boundary of the plastic 

zone (see Figure 11).   A relationship between the geometry 

of the crack and plastic zone, the applied load,and the 
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yield stress Y is obtained through the requirement that 

stress be finite at the end of the plastic zone.  The ex> 

pression thus obtained is 

!■< °s(jry). (56) 

This result was compared favorably with experimental measure- 

ments by Dugdale. 

Subsequently, the Dugdale model has been incorporated 

into the case of a propagating semi-infinite crack by Goodier 

and Field ^28^, the Yoffe* model by Kanninen et al ^29^,and 

(14 ) 
the Broberg model by Atkinson v   .  In this section and 

Section V, these models will be examined with special atten- 

tion directed toward the energy dissipation associated with 

each. 

4.2  STEADY STATE CRACK PROPAGATION PROBLEMS 

For steady state problems, with a disturbance moving to 

the right with velocity v in an infinite or semi-infinite 

medium,the Galilean transformation of coordinates, x. = X - 
1   i 

vtö ., allows the reduction of the number of independent 

variables from three to two. Thus, many of the powerful 

tools of two-dimensional analysis may be brought to bear 

on the problem.  In parti cular, the comp"!ex variable technique 

of Muskhelishvi11i is of great use in dealing with steady 

(30) (31) 
state crack propagation problems (see References   ', v ', and 

(32 ) v  ').  Thus, for a crack moving with velocity v, the stress 
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components of dynamic plane elasticity may be expressed in 

terms of two functions (31), $.(z.), (j=l,2), of the complex 
J    J 

vari ables z. as 
J 

11 
•2Re[s2 + Jd-sp^jdJ + J(l+s;)»2(2a)]   (57) 

o22   = {'l+spRet^^z,) + *a(z2)] 

(1+s2) 
ai2 = 2Im[s1*I(z1) +  ~~  42(z2)] 

2 

(58) 

(59) 

where s  and s are defined in Appendix I and, 
12 rr 

Zj = Xi + iSjXa  '   j = ]'2 (60) 

with (x,,x ) being the coordinates in a frame of reference \  j   2        j 

attached to the crack. 

Similarly, the displacement field is 

ux = - I Re[^(Zl) + l(l+sj)4»2(z2)] 

= - Im[s1^1(z, ) + 2 
1+s? 2 

2   u <t> (z )] T 2 \  2 / J 

(61) 

(62) 

in which 

VZJ} $j(z.)dz.  ,  j - 1,2. (63) 

Due to simplicity of analysis then, most crack propa- 

gation problems that have been solved are steady state.  The 
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two examples considered in this section are a semi-infinite 

crack with self-equilibrating concentrated loads Q applied 

at a fixed distance c from the crack tip and a finite crack 

of fixed length 2c.  Both cracks propagate with constant 

velocity v. 

4.3  SEMI-INFINITE CRACK 

Considered here is the case of a semi-infinite crack 

whose motion is maintained by concentrated loads, Q, at a 

distance c from the crack tip. The geometry is shown for 

the elastic case in Figure 12 and for the plastic case 

in Figure 13. 

The stresses and displacements for the elastic model 

may be obtained from Appendix I.  Makino use of Equation (14), 

the elastic energy release rate for plane stress is 

GI  (Uv)si(l-s^) 

*T " 4Sls2 - (u7[) 
(64) 

where G. is the corresponding static value of the energy 

release rate and s. (j=l,2)  is defined by Equation (1-6). For 
J 

* 
the semi-infinite model Gj is 

G. Hi Gi ■ ^S^n (65) 

The ratio G,/GT is plotted in Figure 18.   This result is 

also valid for the case of the fixed length finite crack 

(with appropriate change in Gj). 
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Figure 12.  Semi-infinite Crack Loaded with Concentrated 
Forces. 
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Figure 14.   Equivalent Elastic Problem for Semi-Infinite 
Crack. 
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Using the Dugdale hypothesis a thin plastic zone ahead 

of the crack may be represented by an extension of the crack 

by a length equal to that of the plastic zone.  Over this 

= Y 

equal to the yield strength of the material is applied.  This 

is shown in Figure 14. 

added increment of crack length tensile stress, a 

The incorporation of plasticity into the semi-infinite 

model may then be accomplished by direct application of the 

elastic solution as follows. The solution to the elastic 

problem with the coordinate system attached to the crack 

tip,as shown in Figure 12,  has been derived by Sih ^   ', 

where the stress functions introduced in sub-section 4.1 are 

1 
?j(Zj) ■ -g.(slSs2)Q/c7zT(-^) 

J 

(66) 

nth   the  functions   g-(s   ,s2)   being 

(1+s2) 
g    (S    ,S    )   =     

1     1     2 ir[4Sls   -(1+sf)*] 
(67) 

g2(sx,s2) 
4Sls2 

*0+s2)[4SlS2-(Hs2)2] 
(68) 

The  corresponding  displacement  functions  are,   through 

Equation  (63), 

/ i/fT +  /c 
*,- (z .)   =   ig.(s   ,s   )Q£n    —^ 

J     j J \Uz. /c 
(69) 
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The preceding equations represent a fundamental solution in 

that they may be used to construct the solution for an arbi- 

trary distributed load on the crack surface.  For the problem 

of interest here, it is necessary to find the solution when 

uniform tractions of intensity p are applied to the segment 

of the crack lying between x: = -d and Xj = 0.  That is, let 

Q --   pd? and  c = -C (70) 

and integrate Equation (69)      over  the   interval   -d<_Fs<0,   the  result 

being 

J, .                     /i/zT +   /ff 
rAz*)   =  -P/3" 9,-(s   ,s   )   2/zT -  -I  (d + z.)£n  J  J   J J    l   z {    J     /a       J     \i/zT - /a", , 

(71) 

The stress functions *-(z.), upon differentiation of Eqs. 
J    J 

(71)  are found to be 

(Zj) = -P9j(sl,s2)' 
i /FT + /d" 

2/d7TT - i£n ! J  
J     \i/"zT - /a", 

J 

(72) 

The solution to the elastic-plastic problem, where the 

loads Q are at a distance c from the physical crack tip and 

where the plastic zone extends a distance d beyond the crack 

tip may now be obtained by  the principle of superposition 

(see Figure 14).    That is, replace c by c+d in Equation (66), 

let p = -Y, where Y is the yield stress, in Equation (72), and 

the stress function for the elastic-plastic problem is equal 
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to the sum of Equations  (66) and (72).     The  displacement  function 

is  obtained  in  the  same manner.     In  order  to  satisfy  the 

Dugdale  hypothesis  of  finite  stress  at  *l   =  0, consider  the 

resultant  expression  for  $.(z.)  which   is 
J v 

W     =    -gj(S.'S2' ^(zj+c+d) ^2j V£ 
(73) 

Thus, it follows that, for non-singular stresses at trie tip 

of the plastic zone (the crack tip of the two superposed 

elastic solutions), the coefficient of 1//FT must be zero. 

Then, the following expression relating the ratio Q/Y to 

the geometric quantities must hold: 

Q _ 
Yd = 2-/(c+d)/d (74) 

The  expressions   for  <f>. (z.)   are  then 

+  2i/d(c+d)   Hr\ 

r /i/z~ +  /a" 
2/zTd" -   i(d+z.)£n ( J  

i/zT -  /d", 
J 

1/17 +  /c+d 

i/FT -   /c+d, 
(75) 

This displacement, uo, of the upper crack surface may 

be obtained by substitution of Equation (75) into Equation (62) with 

z. equal to x .  The result is 
J         i 
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p * 

s   (s2-l)Y j \    2        / 

7ry[4Sls2-(Hs2n 

,        f/c+E -   /~x~ \" 
+  2/d(c+d)£n     - 

\/c+d" +  /^xT j 

2/-(x1d)   -   (d+xjin 

x<0 

...■j».-amw-**«*ii; 

va* - 
/d~+ AT 

(76) 

I 

s 

The  length  d  of  the  plastic   zone   is   independent  of 

velocity  and   is   related  to  Q/Y  and  the  distance  c  of  the 

load  Q  from  the  physical   crack  tip  by   Equation (74).    The re- 

lationship   is   shown  graphically  in  Figure  15. 

Since  the  plastic  zone   length  is   independent of  velocity 

a  contour  C which  surrounds   the  plastic  zone  and   is   fixed 

in  size  with   respect   to  time  may  be  used   in  calculating   the 

energy  dissipation  for  this  model.     Then,   the  path   indepen- 

dent  integral   around  the  contour  of Equation (8) may be evalua- 

ted   by  shrinking  C  onto  the  boundary of  the  plastic  zone. 

As   a  result, the  expression  for  Gj   is 

r 3U • t Su 

'I T i   3x 1 ds  = 
i 

22 3Y7 dxi (77) 

In  the  case of  perfect  plasticity  considered  here, 

a       is   equil   to  Y,   the  constant yield  stress.     Therefore 
2 2 

«I = Y j    TTd\ = YK1L (78) 

or 

GI   =   Y6T (79) 
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where 6, is the crack opening displacement which is defined 

in terms of the displacements u and u" of the upper and 
2        2 

lower crack surfaces at x =-d as 

sT ■ [uj - u;] (80) 

Then making  use of Equation (76), the expression for 

for the  semi-infinite  crack model   is 

2(s*-l)Ys 

Try[4SiS2-(l+sp2] 

r '/cTd" 
d + /d(c+d) Jin 

v. 

/d~ 

/c+d + /d, 

(81) 

For convienience, using the above, the energy release rate 

may be written as the product of the normalized elastic 

value and a function of Q/YC.  That 

"I 
* 

I el 
f(q) (82) 

with q = Q/YC and 

0 f(q)   ■  ^r \ 1   -   /T^q2   +   p£n(q   +   /T+qJ) 
q } (83) 

Figure 16 is a plot of f(q) versus q.  Note that f(q) is 

equal to the ratio of G, to the corresponding elastic value 

GT  , at a given crack speed, 
'el 
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4.4  CONSTANT LENGTH CRACK 

Consider next the problem of a crack of fixed length 

2c which propagates with a fixed velocity v.  This crack 

model, with a Dugdale plastic zone is shown in Figure 17. 

With a=c, the elastic case would be depicted. 

As for the semi-infinite crack model, the general re- 

sults of Appendix I apply for the elastic results. Thus, 

Equation (64)  also applies for the finite crack problem 

* 
with GT the static energy release rate now being 

7TP2C 
'I " 2p(l+v) (84) 

The analysis for the plastic case is similar to that 

used for the semi-infinite crack.  Using thr results of 

(12) 
Si h     solutions for the sectionally holomorphic functions 

$,-(z,-)> for a crack of length 2a, in an infinite elastic 

medium, when 0  = 0 for all x on the crack line, are of 

the form 

+a 

(85) Mz.) =  >  
J J   27ri/z?-a2 

J     "3 

J—— d5 + rj 
K-z /z~pä^ 

J 

- 

where the functions f , f , r and T2 are 

f.(e) 
O+s*)2 - 4s,s 

1  2 

4s s 
f (c) -     ( 2 

(1+s*) 
f,U) 
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Plastic Zone (o-22 = Y) 

Figure 17.   Constant Length Crack With Dugdale Plastic 
Zone Propagating with Velocity. 
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+ 0 
2 2 

2(s;-s;j 
(88) 

r = 2 2 1 1 + a 
2 2 

1+s2  2(s2-s2) 
2 1   2 

(89) 

with a  and a"  being normal stresses on the upper and 
22       2 2 rr 

lower sides of the crack and with all   and a" being the 

stresses at infinity. 

Consider first the problem where concentrated loads Q 

are acting on the upper and lower crack surfaces at xx = +b, 

■b   (see  Figure  18) For  this  case,  rx  =  r, 0  and 

fx(£) 
2(l+s2)P 

(l+s2)2-4Sls2 

[6(£+b)  +  6(£-b)] (90) 

Then  *.(z.)   are 

Za2-b2  z 
•j(«j)   -  -2gj(si5s2)Q- J_ 

(z^-bM/zyT2" 
J J 

/here  g.(s   ,s   )   are  given   by  Equations (67) and (68), 

(91) 

The above expression may be used to generate the solu- 

tion to problems where uniform tractions are imposed upon 

the crack edge.  For the case shown in Figure 19  where 

the portions of the crack surface extending from |x | = c 

to |x |= a are under pressure p, the functions ^(z.:) may 

be obtained by letting Q = pdf; and b = £ and integrating 
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Figure 18.   Constant Length Crack Propagating with 
Velocity v and Loaded by Concentrated Forces 
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Figure 19.   Constant Length Crack Propagating with 
Velocity v and Loaded Uniformly over Portion 
of Crack Surface. 
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Equation (91) over the range c^£a.  The result of this opera- 

tion is 

I 

W = -g^Sj.sjp , 2z,cos~   (c/a) 
J 

,z,/a2-c2  + c/a'-z?. 
J J 

+    IT (92) 

In  order  to obtain  the  solution  for   a  crack  length  2c 

with  a  plastic  zone  of  length   (a-c),   the  above  solution with 

p  =  -Y  is  added  to  the  elastic  solution  of a  crack of  length 

2a  under  uniform tensile  stress  P  at  infinity   (see  Figure 

17). The  latter  solution,  which may be obtained  from 

Equations (85) through (89)v'"' is 

W =    g,(s. ,S_)PT7 

with 

2(s2-s2
2) 

J_ 
/z?-az 

•        J 

+  A. (93) 

(94) 

1+s2       2(s2-s2) 
(95) 

Inspection of <J>.(z.)   for the two cases  reveals  that, 
J   J 

for the superposition of the two solutions to satisfy the 

Dugdale hypothesis of finite stress in the neighborhood of 

| x j | = a.the following condition must be met: 
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ä = cos 
P TT 
T 2 (96) 

The superposed solution that satisfies this condition is 

then 

• (Zj) ■ 9j(s,.s2)Y< 
'z ./a2-c2 - c/a2-z? 

i 1og( J   —    j 
z./a2-c2 + c/az-z4 
J o 

..(,♦*) )+Aj (97) 

In order to evaluate displacements, the functions f.(zj 
J J 

are  obtained  by   integrating  the  preceding   expression with 

respect  to  z..     Thus, 
J 

♦j(2j)  -  -9j(s1,s2)Y    iZjlog 
z./a2-c2   -  c/a2-z? 

J ü 

z ./a2-c2  + c/P^zT 
J w 

-   iblog 1 H  ^(1+Y)zi     + Aizi 

(98) 

Then, by Equation (62) the displacement on  the  upper  por- 

tion  of  the  crack  surface  is 

s   (l-s2)Y 
1 2 

7TM[4SIS2-(1+S2)2] 
x  log 

x/a2-c2  -  c/a2-x,2 

x/a2-c2  + c/a2-x,2 

+ c  log 
/a2-c2   +  /a2-x2 

. a^c7 -  /ä^xT 
>      x <a . (99) 
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The crack opening  displacement,  6-r,  at   |x   |   =  c  is 

4Sl(l-spYc 

>T       TTU[4SXS2-(1+S2
2)

2] 
log(a/c) (100) 

or,  making  use of Equation ^96) 

4s1(l-s2
2)Yc 

6    =  1 2  log[sec(ä)] 
T       7ry[4SlS2-(l+s2)2] -Y 

(101) 

Use of the Dugdale hypothesis has led to a relationship 

between the length a of the plastic zone plus the crack, the 

length c of the crack, the applied stress P,and the yield 

stress Y. The relationship is again independent of crack 

speed and, since Equation (96) is the same as Equation (56), is 

identical to the static result. Thus, calculating the energy 

release rate the same reasoning as was used for the case of 

the semi-infinite crack applies and the general expressions 

of Equations (77) - (79) and Equation (82) are valid in this case 

also, with f(q) being given as, 

f(q) 
8 

TT2q2 
log(sec[J q]) (102) 

where 

q = P/Y (103) 

Again, it should be noted that f(q) in Equation (102) is equal to 

the ratio of the plastic energy dissipation to the elastic 

energy release rate for the Yoffe" model. This ratio, 
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independent of crack speed, is plotted in Figure 21.   Thus, 

for a given value of P/Y the value of GT /GT may be obtained 
1pl  * 

by multiplying the plot in Figure 20 by the corresponding 

value of f(q) obtained from Figure 21. 
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SECTION V 

PLASTIC FLOW AROUND AN EXPANDING CRACK 

A more realistic crack model for the projectile pene- 

tration problem should involve a central crack in the tar- 

get material moving at both ends.  As before, the material 

along the lines of expected crack extension will be assumed 

to flow plastically and to move with the crack but at a 

different velocity.  The energy released as a function of 

the crack speed will be examined. 

5.1  CRACK EXPANDING ELASTICALLY 

Broberg ^  ' considered the case of an infinite elastic 

plate, under uniform tensile stress P, with a crack opening 

from zero length and extending with uniform velocity v. 

The stresses and displacements near the crack tip for this 

case are given in Appendix I.  It should be noted that this 

model would apply to the case where an expanding crack has 

reached a length several times greater than its original 

length prior to propagation (after the initial acceleration 

stage). 

One of the important contributions of the Broberg solu- 

tion was that it allowed a more realistic estimate of the 

rate at which energy is dissipated at the crack tip, i.e., 

the energy release rate G».  Using Equations (14) and (1-11), a 

plot of the normalized energy release rate, G,/Gj, versus 

the ratio of crack speed to dilatational wave velocity is 
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given for steel (v =0.29) in Figure 26.   Two factors should 

be kept in mind when using this plot.  First, the normaliza- 
* 

tion with respect to 6» implies that the value of Gj at a 

given velocity is directly proportional to the instantaneous 

crack length c, since, with the value kj = P/ü, 

Secondly, the value determined is the predicted amount of 

elastic energy irreversibly absorbed by the crack tip at a 

given velocity; the mechanism by which this energy is ab- 

sorbed is not specified.  Thus, in order to derive a func- 

tional relationship between the material parameters, crack 

length, load, and velocity, this mechanism must be properly 

modeled. 

If, for example, the Griffith criterion of direct con- 

version into surface energy is used, the velocity could be 

approximated through the relation 

GT ■ 2Y 

or 

I 

Gj    16YM 

GJ   TT(K+1)P
2
C 

where y is the specific surface energy. Thus, the predicted 

limiting velocity as C+» would be the Rayleigh wave velocity 

cR.  However, the above criterion can only be applied to an 

66 



exceedingly brittle material such as glass, with the assump- 

tion that Y is independent of crack speed.  Experimental 

evidence supports the fact that crack velocities in ductile 

materials are dependent upon a dissipative process and may 

be limited to speeds which are only a fraction of cR (29) 

5.2  PLASTIC YIELDING AROUND THE CRACK 

Incorporation of the Dugdale hypothesis into the material 

of dynamic crack propagation allows consideration of plastic 

energy dissipation.  However, as will be seen, this does 

not satisfactorily specify the absorption mechanism.  That 

is, again an additional condition dealing with material be- 

havior is necessary if one desires the limiting velocity 

for a gi^en material and applied stress.  The information 

that is obtained here is the amount of energy dissipated by 

a very specialized plastic zone for a given crack velocity. 

The formulation of the elastic boundary value problem 

that is equivalent to the elastic-plastic problem of a 

uniformly expanding crack with a Dugdale plastic zone ahead 

of the crack tip is made in the same fashion as for the 

(14) steady-state and static problems.  Atkinson   ' consi- 

dered this problem for a crack whose tips have a velocity 

v with a plastic zone, the end of which is traveling at ve- 

locity 3.  The equivalent elastic problem, then, consists 

of an infinite plate under uniform tensile stress P with a 

crack of length 2a = 23t upon which tensile stress Y is 

applied over the region vt<|x,|<3t.  The expressions for 
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normal stress o22, ahead of the plastic zone and for the 

second derivative with respect to time of the displacement, 

u2, of the crack surface are 

2 2 

B 
2 

TA 

-1 
f  (s-2k2)2ds 

_l  sA(l-s)s-ß2)3 

,.1 

4k3 •/F^s" 
s/s(s-Bg)3 

ds 

(s-2k2)2ds 

U s(s-b2)A(l-s)(s-ß2)3 

- 4k 
k2 

'■ AJ^s  ds 
J s(s-b2)/s(s-ßn3J 

+ p C104) 

for x2 = 0 and \x1\>B0r(or r>$2
0)    and 

f(P-Y)ß  r 92u 
1 =  -Re[F(r)] 

9T2       2irk*pc;|xJ 

o + Ybr_ 

v r~K r-b: 

*or 

/?(r-ß2). 
4>(s)ds 

where 

4 
1 _ 

2L 

r 
r-s 

0<r<ß2 or 0<Ix, |<ßnx 0 'I'D 

(105) 

T = Cjt 

b = v/c 

Bn  = S/c. 

k = c2/Cl 

r = x2/!2 (106) 

and Y is the yield stress of the material. The elastic 

wave velocities, c, and c  , are described in Appendix I. 

The functions F(r) and <J>(r) are 
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F(r) 4kV3Vl-r  
(r-2k2)2-4k3/(l-r)(k2-r) 

(107) 

and 

/■ 

4>(r)  =   , 

[B - -I*.] (r-2k2)2-4k3/TT^7TP--Ty> for ß2<r<k2 

r-b2      r^(l-r)(r-ß2}3 ° 

[B - -IA_]   (r-2k2)2  k2<r<1    (108) 
r-b2  r/(l-r)(r-ßg)3 

where 

TA 
2YbV(l-b*){ß?-b2)s 

Tr[4kV(l-b2)(k2-bq-(b2-2k2)2] 
(109) 

and where the following equation may be used to obtain B, 

B = 
2(P-Y)ß0  2Yb  }   r /s-ß 

+ — 
TT     TT 

/S 
<}>(s)ds . (110) 

ß' 

An algebraic expression for B in terms of elliptic 

integrals may be obtained by combination of Equations (108), (109), 

and (HO).  The result obtained by Atkinson has been cor- 

rected here and is as follows 

BZ = 2(P-Y)ß0 - ^ Z, (111) 

where 

2[ß2-4k2ß2  +4k2] u   o o 

ß.O-ßJ) 
usrm + 

69 



r 
*-,- )Omi»m»r*imtw*M™w *,——. 

2[ßS-4k2(l+k2)ß2+8k*]  E(/Trp7 

Jd-BJ) 

§*i K(/l-ß|/k*J   + iS£ E^l-ßj/k*) (112) po po 

and 

2b2(ß2-2k2)2   
Z    = 2  K(/T=ßTT 

ßQ(ß2-b2)(l-ß2) 

2b2(ß2-2k2)2-8kMß2-b2)(l-ß2)   
+  ? ? L_ E(/TF) 

ßo
3(ß2-b2)(l-ß2) 

8k2b2         8k"(ß2-2b2)   
+ _HO  K(/1-ß2/k2)   +  °.  E(/l-ßa/k*J 

ß   (ß2-b2) ° ß3(ß2-b2) ° 0        0 ° 

2ß   (b2-2k2)2       / 1-ß2   
+ —°- n      s- ,    /Tß7 

(i-b2)(ß2-b2)    \ l-b2 ° 
0 

8k2ß0        /l-ß2/k2 _ _i 
 — n     2   ,     /1-ß2/k2     . (113) 

(ß2-b2)      \l-b2/k2 

The functions   K,   E,  and  n,  are  complete  elliptic   integrals 

of the  first,   second,  and  third  kinds, respectively,and  are 

(33} defined  in  Byrd  and  Friedman   v     '. 

Eq-ation (105) must be integrated twice in order to 

obtain the displacement of the crack line. To this end, 

Equation (105) i: rewritten as 

92u, ,Darr^n f (r-ß2) 2 rRe[ LULU f 
lx.|(r-ß2) I 

(P-Y)ßB  +  °— Yb 
3T< 27rk'tpc2|xi|(r-ß2) I °       (r-b2) 
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(s"ßo) 1 
TiTFT *(s)ds   +  2   <}>(s)ds>    0<r<ß2   . 

/s j ° •} 
ß: ß; (114) 

Application of Equation (110) simplifies  the  preceding  equa- 

tion  to  read 

92u 

9T: 

rRe[F(r)] 

2irkV2|x   |(r-82) 1 1 0 
0 ^- B  + 

(b2-ß2)Yb  o  
r-b2 

1   f   (s-ßo) 
Ts^rT 4>(s)ds 

■ 
0<r<ß2 

o 

ß' 

(115) 

Recalling  that  the expression  for  <J)(s)   is  given  in 

Equation (108), the integral  in Equation (115) may be broken down into 

four  integrals which may  be evaluated  by well   known methods 

of complex  variable  theory   ^°'.     After further  simplifi- 

cation  through   Equations (107) and (109), the resulting expression 

for 92u /9T2   is 
2 

92U. 

9T
; 

r 

pc2|xi|(ß
2-r) 

Br' TAr- 

/HP?  (r-b2)/ßpr 

0<r<ß; 

(116) 

For any function g(r,x), where r is given in Equation (106), the 

chain rule of elementary calculus allows the derivative with 

respect to T of g to be written 

9£ _ 9£ il .. 
9x * 9r 9T -2 

V2 
9r (117) 
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Thus,   Equation (116) may be written 

L. 
9r (£) 2pc: 

TA 

(ß^-r)32     (r-b2)(ß2-b2)*2 

0 0 s V       0 

(118) 

Integration  of the above  expression yields 

3u, 

FT 2pc: 

2TA 

.(ß;-r) 
1/2 

(ß2-b2)(ß2-r) 
1/2 

TA 

(32-b2)3/2 

0 

log 
/ß-m - /^pr 

/ß1^?       +    Zß2-b2 
0 Mö 

0<r<32 

0 

(119) 

Again making use of Equation (117),   a   second   integration  with 

respect to  r  leads  to  the  result 

2B /ß2-r 
2pc2   |^r"- 

TA 

2TA/p^r  o 

ß2(ß2-b2)r' 
0        0 

(ß2-b2)^ L^ 
log 

/ß2-b2   -   /ß2-r 
M 0 [_0 _ 

/o2-r +  /c2-b2 

+ £ log 
r^/ß2-b2  +  b/ß^T 

r^/ß2-bz   -   b/ß2^r 
0<r<ß2 

(120) 

The  condition  that  stress   be  bounded  in  the  neighbor- 

hood  of the  points   | x   | =ß 0 T  is  satisfied  if the  slope of 

the displacement of the  crack  surface  is  zero  at   |x   |=ß T 

Differentiation of Equation (120)   with  respect  to  x     reveals 

that  this  condition  requires  that 
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B = TA 
ßz-b' 

o 

(121) 

With elimination of B by the above relation, the expression 

for u2 may be written in terms of x and T as 

TA 
2pc2(ß2-b2)32b 

i  o 

I  Tbl 0( 
x/^pb^ - /^J^7*? 
/T2ß2-X2    +    T/ß2-b2 

M0 1 0 

xjog 
x /^irpr + 

1   po 
b/ß^T2' X2 

1 

x /R^F
5

" 
1   Mo 

b/ß^Tz~X 
0 

(122) 

5.3     FINITENESS   CONDITION 

4 

Although Equation (122) does not explicity depend on the 

applied load P, there is implicit dependence through the 

relationship between B and TA of Equation (121). This equation 

together with Equations (111) through (113)  imposes a functional 

dependence betwepn the parameters P/Y, ß , and b.  Thus, in 

evaluating u, only two of these may be independently speci- 

fied.  Upon combination of Equations (111) through (113) with Equation 

(121), the finiteness condition may be represented by the 

equation 

< 
AT 

1 -P/Y = ~ 1 ■ K(ZTTp-) + 
(ß2-b2)      ° 

4k' 
b2ß2(B2-b2)      ° 

4k — E(v/l-B2/k2) + 
b2ß2(ß2-b2)      ° 
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4k' 
b2(ß2-b2) \l-b2/k 

o 

l-B2/k2      

(b2-2k2) 2 \ 2 1-32 

ni —°- 
b2(l-b2)(ß2-b2) \l-b2 

0 

/r (123) 

Using the preceding equation, P/Y has been plotted as 

a function of relative plastic zone size (ß -b)/ß for fixed 
0     o 

values of 3 in Figure 22 and for fixed values of b in o 

Figure 23.   The curve for B0 =b=0 represents both the static 

case and the constant velocity fixed length crack.  An im- 

portant effect to be noted here is that, for a given value 

of P/Y, an increase in crack velocity causes a decrease in 

relative plastic zone size.  Figure 24  shows the variation 

of 8 , the normalized velocity of the plastic zone tip, 

with the stress ratio P/Y when b is held fixed.  It can be 

seen here that B has a lower limit equal to the normalized 
o 

crack speed b and reaches a maximum which is less than or 

equal to the normalized Rayleigh wave volocity when P/Y=l. 

The plastic zone tip reaches the Rayleigh wave speed only 

when the crack tip reaches the same speed. 

5.4  ENERGY RELEASE RATE 

For this model, the rate at which energy is dissipated 

by the moving crack tip is evaluated by the result of Equation 

(20)  in Section II. 

Making use of the relation 
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Figure 24.   Finiteness Condition for Uniformly Expanding 
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for Various Crack Tip Velocities. 
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2(
X!>T)dx

1 
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br 

V 

DT 

9u 

dT 
dx      +   U,(ß   T,T)ß      -    U,(bT,T)b 

2lK0     '     "0 2 

(124) 

and  noting  that  u   (ß  T,T)   =  0,    Equatior  (20) may be written as 

V 
,Tb  =   2Yu,(bx,T)b +  2Y |-   I     u   (x   ,i)dx 
I 2 3T     I 2        11 

(125) 

Upon  substitution  of  Equation (122), the integral  in the 

above  equation may  be  expressed   in  the  form 

V 
TA un (x   ,t)dx    =  - — 

,       2     l ' 2pc2(ß2-b2)V2b       l 2 

»T 1        0 

(I     +   I   ) (126) 

where 

V 
I    =        xblog 

T/^F2-   -    /T
2ß2-X2 

_/t2ß2-X2    +    T/e2-b2_ 
dx (127) 

and 

»oT 

DT 

x  log 
l     3 

VJF5T   +    b/ß2T^-X2 
dx,   . (128) 

The  integral   I     is 3 i 

I        =    Tb 
1 

'T/ß2-b2     -    /T
2
ß2-X2 

x log I -    °        -^zr 
V /l2ß2-X2    +   T/ß~2"-x2 

+    Tb    log   h2K    +    TbX!    -    T/(ß;-b2MT2ß2^xT) 

2       °9  \i2ß2   -  ibx     -  x/Tß
2-b2)(T

2ß2-x2) 
0 1 p 0 0        1' 
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,   X2ß2    +    TbXl    +    t/(^-b<)(T^-X2
2) 

-T~ log      
*  X2ß2    -    xbx      +   x/Cß2-b2)(x2ß2-X2) 

0 1 0 0        1 

Xi 

+  ?T/^UZ   cos"'(rr-) 
^0 To. 

Tßi 

ib 

(129) 

which reduces to the result 

I    =  T2b2 

l 

(ß 
2109^ ) - -^— COS 

'(') 
(130) 

Considering  next  Ig, 

2        2 

x,/ß2-bz  +  b/T
2ßz-x2 

(x2-x2b2)log(-^ lii  
*   Xl/ß^b~2"   -    bA2ß2-X. 

■2i2b/^TBT cos-1   (^-) 
o  _i 

V 

bx 

(131) 

or 

I     =  T2b/^TBT cos"]   {—) 
2 p0 P 

(132) 

Therefore, the derivative with respect to T of Eq. (126) is 

9_ 
3x 

r 
U  (X  ,x)dx =  ^ ,        ,    , 

)T 
2  »      Pc

2(ß2-b2)V2bL b [ MZEC0S-' (b_) 

ß. 

']• - 2 log(^) 

From Equation (122), the expression for   u2(bx,x)   is  obtained 

to  be 
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(bT)TA U„(bT,T)    = 
pc2(ß2-b2)V2b 

log(^) (134) 

and,  from    Equations (125), (133), and (134), it follows that 

Gj   is 

i 

2YTA(bT) 

pc2(32-b2)32b 

v^T^ 
cos"1 (§-) - log(ri) 

(135) 

The energy release rate normalized with respect to the 

corresponding static elastic value is plotted in Figure 26 

and may be compared to the elastic result for a crack of 

the same velocity and length. 

A quantity mentioned previously as being of descriptive 

importance is the crack opening displacement, <$T, at the 

point |x | = vt where the plastic zone begins.  This quantity 

is twice the displacement u (In,b), given by Equation (134), or 

6T =  2CTA  - ;  log(B /b) 
'  pc2(32-b2)3'2b     ° 

i  o 

(136) 

Since 3 /b = a/c, it is easily seen that Equation (136) is the 

same as Equation (100), the crack opening diplacement for the 

fixed length case.  It should be noted,however, that for 

a fixed applied stress P, the behavior of 6T with respect 

to crack velocity is not the same. This is due to the fact 

that in the steady state case, for which Equation (100) applies, 

the ratio a/c is dependent only on P/Y and is independent 

of crack velocity, while a change of crack velocity in 
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Figure 26.  Normalized Energy Release Rate for Uniformly 
Expanding Crack Model. 
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Equation (136) when P/Y is fixed requires a change in ß /b through 

the finiteness condition. 

The relation G, = 6TY has been used in Section IV for 

the static case.  Multiplication of Eq. (136) by the yield 

stress Y and comparison with Eq. (135) reveals that this 

relationship does not apply here.  The basic difference is 

that expanding crack model accounts for energy dissipation 

not only through the translation of the plastic region with 

the crack tip but also through enlargement of this plastic 

region.  Therefore, one would expect that GT, as given by 

Equation (135), would be higher than 6TY.  This is shown graphi- 

cally ii Figure 27  where the relative difference between 

G, and 6_Y is plotted as a function of normalized crack 

velocity b and in Figure 28  where the same difference is 

plotted as a function of P/Y. 
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Figure 27.  Relative Difference in Energy Release Rate for 
Expanding Crack Model Due to Difference in 
Method of Calculation Plotted as a Function of 
Crack Velocity. 
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SECTION VI \ 
I 

RESULTS 

General results have been presented in Section II thai: 

allow the calculation of the rate at which energy is released 

by a uniformly moving crack.  Of particular interest is the 

fact that a path independent integral may be used for this 

calculation not only for the steady state cases of crack 

propagation but for the non-steady state case of the uni- 

formly expanding crack, as modeled by Broberg. 

The rate at which energy is dissipated due to plasti- 

city was calculated, for the dynamic case, in a manner 

(28) analagous  to the analysis of Goodier and Field v  ' for 

the static case. Although a specific result was presented 

only for perfect plasticity, work hardening can be incor- 

pora + ~H through Equation (17). 

.?   ,rder to gain further insight into the transient 

response of the cracked plate.it is useful to review the 

wave patterns. When a transient load is applied to the 

crack surface, the result, aside from wave propagation from 

the loaded surface, is that the crack tips form the center 

of two outgoing cylindrical waves.  For the period of time, 

t , before these waves begin to interact the short time be- s 3 

havior of the solution is described by the equations 

k (s) 

a, . =   f^ _-(e)    0<t<t. 

86 



where r is the distance from the crack tip, and 

(s) = k}-'= /t 

The function f..(6) is the same as in the static case.  Since 

the disturbance at one crack tip is not yet affected by the 

presence of the other crack tip, this is the range for which 

the solution to the problem of sudden loading on a semi- 

infinite crack is valid.  For normal loading the stress- 

intensity factor may be obtained from the solution of Baker 

v '  which is, 

i ' = o /J  .785/c~t7aT 
I 1 2 

for the case of steel . 

This result  is plotted in Figure 9  and shows good 

agreement with the numerical solution obtained here. 

The stress wave pattern loses its geometrical simpli- 

city after the two cylindrical waves begin to interact al- 

though, very close to the crack tip, the angular distribu- 

tion and square root singularity remain the same.  It is 

during this period of maximum disorder that the stress- 

intensity factor takes on a maximum value.  The pattern 

described here is shown in Figure 7 for various times 

after the initial loading.  The outer wave front surrounding 

the crack is not to scale and is obtained by allowing a 

sufficient time to elapse such that c t>>2a.  At this time r 2 

enough energy has been transmitted away from the crack that 
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the dynamic-stress intensity factor is ^/ery  close to the 

static value. 

These results presented here are in agreement with 

those of Soltesz and Sommer^ 'who experimentally deter- 

mined the time-dependent stress-intensity factor due to 

normal loading of a crack in a finite plate of Araldit B. 

Measurements of the crack opening displacement, which is 

directly related to the stress-intensity factor, showed 
_ 5 

that kj reached a maximum at approximately 10  seconds, 

the same order of magnitude as obtained here. The oscil- 

lations that were observed in crack-opening displacement 

were explained as due to a combination of wave reflection 

at the edges of the finite plate and oscillation in the k 

value due to the initially applied load, i.e., the result 

demonstrated in this work. 

The results of Section IV for the steady-state cases 

may present some difficulty when an attempt is made to in- 

terpret them physically.  This may be seen in the elastic 

case by examination of Figure 20 which applies for both 

the semi-infinite and constant length crack.  If the assump- 

tion is made that the crack will run at a speed that causes 

G. to be equal to a critical value GT , then, for a given 
* 

velocity,an increase in G* , the corresponding static 

value of G., would have the effect of lowering the crack 

velocity in order to maintain the same critical value of G» 
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In the case of the semi-infinite crack.it can be argued 

that the result of an increase in the applied load P would 

be to increase the distance c from the crack tip, thus pos- 
* 

sibly maintaining the same value of 6T-  The results for 

both the elastic and plastic case should have some use in 

considering the physical problem of a wedge load applied to 

the crack surface. 

The character of the elastic stress-field ahead of a 

moving crack tip is the same for all constant velocity models 

of the same mode as stated in Appendix I.  Thus, since the 

Yoffe model was the first dynamic crack model,the results, 

in this respect, were a valuable contribution.  However, it 

is important to note that the model of a crack which opens 

at one end and closes at the other is physically unrealizable, 

and one should expect paradoxes in the result of any analysis 

The fact that the results indicate an increase in the elastic 

energy release rate with velocity for a given load and 

crack length is such a paradox since, in effect, it says 

that for a given load the larger the crack length the lower 

the corresponding crack speed.  Further, note in the elastic 

case that the energy release rate for the entire system is 

zero (no energy is transferred over a boundary surrounding 

and moving with the entire crack) while the energy release 

rate for one crack tip approaches infinity as the crack 

speed approaches the Rayleigh wave velocity.  In the corres- 

ponding Dugdale model, the length of the plastic zone is 

independent of the crack velocity.  This, in itself does 
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not agree with the analysis of the more realistic Broberg 

model. In addition, Equation (99) indicates that the displace- 

ments vary from zero to infinity along the crack surface 

when the crack speed approaches cR. This violates the as- 

sumptions of infinitesimal strain theory and indicates the 

solution is invalid for large values of crack velocity. 

It is the conclusion here that the Yoffe model should 

not be used to evaluate the quantitative effect of crack 

velocity on energy dissipation or plasticity and strain 

(29) rate effects.  Kanninen et al v  ' used this model in deal- 

ing with strain hardening and strain rate effects.  Their 

results are valid for low velocities since the value used 

for crack surface displacement is dependent on velocity 

through the function plotted in Figure 20.   These authors, 

in fact,only used the Yoffe model as supporting evidence 

for the approximation of the dynamic case by the static 

values.  Inspection of the corresponding curves for the 

Broberg model indicates that, while there is a range over 

which the quasi-static case may be used, it is not as large 

as anticipated by the results of Figure 20 . 

The Broberg model corrects many of the defects found 

in the Yoffe model.  It more closely approximates the 

physical situation in u.at it takes into account the fact 

the crack is increasing in size. The elastic and plastic 

results for the strain energy release rate (Figure 26) 
* 

follow a trend opposite to the Yoffe model, with GJ/GJ 
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approaching zero as v~*cR.  Therefore, although the results 

for both models have indicated the Rayleigh wave speed as 

an upper limit on crack velocity, the reasons are exactly 

opposite.  Physically, the arguments for a limiting velocity 

based on either creation of surface energy (see sub-section 5.1) 

or plastic dissipation make more sense when used in conjunc- 

tion with the Broberg model. 

When the Dugdale criterion is incorporated into the 

Broberg model,the finiteness condition dictates that, for a 

fixed value of P/Y, larger normalized crack velocities b 

decrease the relative plastic zone size (3 -b)/ß (see Fig- 

ure 23).   In addition, at high velocities the plastic 

value of energy dissipation approaches the elastic value 

(Figure 26).   These results are supported by experimental 

evidence which indicates that high velocity fracture is 

essentially a brittle process. 
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APPENDIX I 

ELASTIC PROBLEMS OF UNIFORM CRACK EXTENSION 

In terms of polar coordinates r and 9 with the origin 

(3) 
at the crack tip as shown in Figure 1,  Sih K   '   has shown 

that, for a class of dynamic crack propagation problems in 

which the crack tip moves at a constant velocity v, asymp- 

totic expansions of the dynamic stresses and displacements 

as r+0 can be found without specifying crack geometry and 

loading conditions. 

For the opening mode of crack extension, where the loads 

are placed symmetrically with respect to the crack line, as 

in the Yoffe* and Broberg models, the singular portion of 

the dynamic stress field near the crack tip is 

ki 

11     /27   i •  1.2 

k 

F (s ,s )[(l+s2)(2s2+l-s2)f(s )-4s s f(s )] 
1 12     2 

(1-1) 

22 
l-  F (s ,s )[4s s f(s ) - (l+s2)2f(s2)]  (1-2) 
5TT   1   1   2      12    2 2       1 ' /27 

a    = _i_ 2s (l+s2)F (s ,s )[g(s )-g(s )] 
i2 /^  i   -  .  .  - 2   112 

(1-3) 

The corresponding displacement expressions are 

yu = k /2r F (s ,s )[(1+s2)(cos26 + s2sin2e)f(s ) 
11112 2 11 

+ 2s   s   (cos26 +  s2sin26)f(s   )] 
1     2 2 2 (1-4) 
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uu2 = ki/2F F^Sj.sJCs^l+s^Jtcos'e + sJsin
29)g(Si) 

- 2si(cos
26 + s2sin29)g(s )] (1-5) 

where kx is the opening mode stress-intensity factor for the 

corresponding static case.  The functions s. (j=1,2) are 
J 

s, - [1 - (v/c,)2]^ j = 1,2 (1-6) 

in which c1  and c2 are,respectively,the dilatational and 

shear wave velocities in an infinite elastic continuum.  In 

terms of the shear modulus u, Poisson's ratio v, and the 

mass density p, cx and c are 

r [2u(l-v)/p(l-2v)]^  , plane strain 

[2y/p(l-v)P  ,  plane stress 
(1-7) 

c2 = (u/p)' (1-8) 

The quantities f(s-) and g(s.) describe the angular distri- 
J J 

bution of the stresses and displacements and are obtainable 

from: 

f2(s,) + g2(s.) = sec6(l+s2tan2e)"^ 
J J V 

(j = "I , 2)    (1-9) 

f2(s,) - g2(s.) - seceO+sHan^)"1 
J J J 
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The function fr1(s1s2) depends on the particular problem 

under consideration.  For the crack of fixed length propa^ 

gating at a uniform velocity, F (s ,s ) is 

F(s ,s ) = [4Sis2 - (Hs2)2]'1 . 
112 *  2 2 

(i-io) 

For Broberg's solution, 

F   (s   ,s   )  =  s A(l+s2;'   -  4s2s2]K(s   )   -  4s2(l-s2)K(s   ) 
1 1        2 ll 2 121 1 22 

[4s2   +   (l+s2)2]E(s   )+8s2E(s   )) ~\ 
1 2 1 1 2    J /j 

(1-11) 

The expression for k is seemingly the same for both 

models, that is 

k = p/c 
i 

where  c  is one-half  the  crack  length.     However,   for  the  Yoffe" 

model   c   is  constant whereas   for the  Borberg  model   c   is  a 

function  of  t.     Thus,   in  calculating  energy  release  rate, 

one  should  be aware  of  the  restrictions   in sub-section  2.3. 

For  a   semi-infinite  crack  with   the  load  and  geometric 

configuration  of  Figure 12,       Fj(s   ,s„)   is  also  given  by 

Equation (1-10) and the stress intensity   factor  k     is  equal   to 

[(Q/ir)/C87cT3. 
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APPENDIX II 

NUMERICAL PROCEDURE 

The dual integral equations formulated in Section III 

were reduced to a Fredholm integral equation that must be 

solved numerically. This integral equation is in the form 

1 

A (£,<)• A U,<)K(£,K)dn = h(£) (II-l) 

where h(£) and K(£,n) are known functions. 

The method of solution that v.'as chosen was to approximate 

the integral in Equation (II-l) by a finite sum and solve the fol- 

lowing set of simultaneous linear equations for the unknowns 

AU^K). 

N 

(ZVK)-1    aJK(C1,nj)A(Tij,ic) = h(C.)      (11-2) 

i = !,-••, N . 

The constants, a., are chosen in accordance with 
J 

Simpson's rule and 

Ci =(FT)  '  nj = TN^TT ' (II-3) 

The function A is thus approximated for each choice 

of the parameters , which is related to the Laplace trans- 

form variable p by the equation, 

K = ap (II-4) 
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By this means, for a given value of  £, the function A (£,<) 

can be represented numerically in the Laplace transformed 

* 
domain.  The curve showing A (1 ,K) as a function of K is 

shown i n Fi gure 8. 

In order to complete the solution for the near-field 

stress components,the function M(t) defined by Equation (53) 

must be evaluated.  Noting that 

t 
t 
m(t)dtj = 1 LJm(t)J , (II-5) 

it  follows   from Equations (53) and (51) that 

M(t)   =   L_1   [f   (p)A   (1,K)]. (11-6) 

For the particular example treated numerically,f(t) is the 

Heaviside step function and therefore f (p) is 1/p.  The 

solution is then completed by evaluating numerically the 

inverse  Laplace transform of the function A (l,c /pa)/p. 

The Laplace transform pair in question may now be written 

A (1 ,c,/pa) 
M(t)exp(-pt)dt 

M(t) 
A (1 ,c,p/a) 

2-rri 
exp(pt)dp 

Br 

(II-7) 

(II-8) 

Make the following definition 

c = PA =  1 (11-9) 



T = 
c t 

2 

AjO.s) ■ A (U/s) 

(11-10) 

(11-11) 

M (T) ■ M(t) = M(aT/c ) 
1 2 

(11-12) 

Then, in terms of the variables s and T, the Laplace 

transform pair is 

AT(l.s) 
s M (T)exp(-sT)dT (11-13) 

M
X(T) - ök   I  A (|>S) exp(sT)ds 2-n-i j (11-14) 

Br 

Having available the solution of Equation (II-l),  A (i ,s)/s is 

known for discrete values of s.  There are a number of 

methods available that allow calculation of a function from 

knowledge of a finite number of values of its Laplace trans- 

(35) 
form.  The one used here is due to Papoulis^   , as en- 

larged  upon by Miller and Guy 
(36) 

In this case, 

A (l,s)/s is evaluated at points given by 

s = (l+n)6  ,  n = 0,1 ,2, •*• (11-15) 

where 6 is a real positive number.  In order to change the 

infinite range of integration in Equation (11-13) to a finite one, 

the following definitions are made: 

98 

-^ 



x = 2exp(-<5T) - 1 

*(x) - M^T) = Mx(- -  4n[(x+l)/2]) 

(11-16) 

(11-17) 

Equation (11-13) is then changed to 

Af(l,[l+n]6)   1 

(1+n) 
TnTT (l+x)%(x)dx (11-18) 

The function <|>(x) is expanded in a series of Legendre poly- 

nomials orthogonal on the interval (-1,1) as follows 

4»(x) » I    C,Pk(x) 
k = 0 K K 

(11-19) 

where 

n .n 
Pn(x)  " ^^T [(1-X)n(l+X)n] 
n     2nn!  dxn 

and , 

Pn(x)Pm(x)dx = , n   m 

;i+7 

n^m 

n=m 

(11-20) 

(11-21) 

Note that 

(l+x)n - I a.P.(x) 
k = 0   K 

(11-22) 

where 
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=   2n(2k + l)   n(n-] )"'[n-(k-1 )] 
(n + 1 )(n+2) — (n + k+1) 

(11-23) 

Then,  making  use  of   Equations (11-21) through (11-23),   sub- 

stitution   of  Equation  (11-19)  into Equation (11-18) yields the follow- 

ing  set  of  equations   that  may  be  solved   for  C. : 

A(l,[l+n]6) n       „/„   ■. \        r„   d   m 
i =     y       n(n-l )• •»[n- (k-1 )J     c (H-24) 

(1+n) k=0  (n+l)(n+2)---(n+k+1)     k 

n = l ,2,---, 

Jote  that,   for  n=0, 

A   (1,6)   =   C (H-25) 

If  N  coefficients  are  calculated,a  partial   sum  is  ob- 

tained   from   Equation  (11-19), and by Equations  (11-16) and  (11-17) an 

approximation  of M   (T)   is   given  as 

N-l 
M,(T)   *     I     C,P.[2exp(-6T)-l] 

k = 0     K   K (11-26) 

The parameter 6 is chosen so that M(T) is best described 

for a particular range of T. 
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